Could these teeth represent the hominin Kenyanthropus platyops?

Human Evolution

Increasing evidence for both taxonomic diversity and early stone manufacture during the Pliocene highlights the importance of the hominin fossil record from this epoch in eastern Africa. Here, we describe dental remains from Lomekwi (West Turkana, Kenya), which date from between 3.2 and 3.5 Ma. The sample was collected between 1982 and 2009 and includes five gnathic specimens and a total of 67 teeth (mostly isolated permanent postcanine teeth). Standard linear dimensions indicate that, although the Lomekwi teeth are relatively small, there is broad overlap in size with contemporary Australopithecus afarensis and Australopithecus deyiremeda specimens at most tooth positions. However, some dental characters differentiate this sample from these species, including a relatively large P4 and M3 compared with the M1, a high incidence of well-developed protostylids, and specific accessory molar cuspules. Owing to a lack of well-preserved tooth crowns (and the complete absence of mandibular teeth) in the holotype and paratype of Kenyanthropus platyops, and limited comparable gnathic morphology in the new specimens, it cannot be determined whether these Lomekwi specimens should be attributed to this species. Attribution of these specimens is further complicated by a lack of certainty about position along the tooth row of many of the molar specimens. More comprehensive shape analyses of the external and internal morphology of these specimens, and additional fossil finds, would facilitate the taxonomic attribution of specimens in this taxonomically diverse period of human evolution.

Check out the article for yourself here

Want to learn more about hominin evolution? Then check out the book on the subject here

Kenyanthropus platyops (reconstruction by W. Schnaubelt & N. Kieser)

Palaeoanthropologist Alan Cyril Walker (1938 – 2017)

Archaeology, Archeology, Cancer, Death, Human Evolution, Human Origins, Palaeoanthropology, Palaeobiology, Palaeontology, Paleoanthropology, Paleobiology, Paleontology, Research, Sadness

CaptureAlan Cyril Walker (born August 23, 1938) died on November 20, 2017, of pancreatic cancer. He was a world-renowned paleoanthropologist and the recipient of numerous awards for his extraordinary scientific achievements, including a “genius” award from the John D. and Catherine T. MacArthur Foundation, and lifetime awards such as the Charles R. Darwin Lifetime Achievement Award from the American Association of Physical Anthropologists and the Leighton Wilkie prize of the Center for Research into the Anthropological Foundations of Technology (CRAFT) and the Stone Age Institute, Indiana University, and the International Fondation Fyssen Prize in Paris. He was one of the only scholars in the world elected to the Royal Academy (U.K.) as well as the United States National Academy of Sciences and the American Academy of Arts and Sciences.

Dr. Walker was born in Leicester, England, the second of four sons of Cyril Walker, a carpenter, and Edith Tidd Walker, a housewife. He was preceded in death by his parents, his first wife Patricia Nicholson, and a younger brother, Gerald Walker. He is survived and mourned by his elder brother, J. Trevor Walker and his younger brother Michael D. Walker, both of whom livie in England, his loving second wife of 42 years, anthropologist and author Pat Shipman, of Moncure, N.C. , his son Simon B. Walker, and his son’s wife Shellene Wellnitz Walker, and his granddaughters Bryn and Meghan Walker of Morrisville, N. C. In addition, he is remembered fondly by many of his former students and colleagues in several countries.

Alan Walker earned an undergraduate degree with honors in the Natural Sciences (Geology, Zoology, Mineralogy, Petrology, and Palaeontology). Following his childhood fascination with animals and fossils, Walker obtained a grant to attend the University of London, earning a Ph.D. in Anatomy and Palaeontology under the mentorship of John Napier. His thesis topic was a study of the functional anatomy and behavior of living and fossil lemurs of Madagascar. His work had a major influence on the field, emphasizing deducing the behaviors of extinct species from living ones to paleontology. He later received an honorary D.Sc. from the University of Chicago.

For much of his career, Dr. Walker was a brilliant teacher of human gross anatomy, training thousands of future physicians. Institutions where he worked included the Royal Free Hospital, School of Medicine, London (19165), Makerere University College, Kampala, Uganda (1965-1969), the University of Nairobi Medical School, Kenya (1969-1974), Harvard Medical School (1973-1978), and The Johns Hopkins University School of Medicine (1978-1995). In 1995 he moved to The Pennsylvania State University to teach anatomy and biology to undergraduate and graduate students, retiring in 2010 as an Evan Pugh Professor of Anthropology & Biology.
Throughout his academic career, Alan Walker was known for his kindness and generosity to students, for the tremendous breadth of his interests and knowledge, and for pioneering new approaches to evolutionary problems. He was instrumental in developing the field of dental microwear to deduce diets of extinct species and was among the first to the study of the structure of the inner ear of fossils to understand their patterns of locomotion and movement of extinct animals.
He was also known for his collaborations in finding fossils with Richard and Meave Leakey in Kenya. One of their most important discoveries was the finding, excavation, and analysis of the most complete ever skeleton of Homo erectus from Nariokotome, Kenya. This skeleton revealed the startlingly tall and lanky stature of a youngster of the species that first migrated out of the African continent. His research also had a major impact on the study of fossil apes, following his discovery of thousands of bones of several extinct apelike creatures on Rusinga and Mfwangano Islands in Lake Victoria, Kenya.

In accordance with his wishes, there will be no funeral or memorial services. Condolences may be sent to his wife, Dr. Pat Shipman, at 3140 Chatham Church Road., Moncure NC 27559 or ( In lieu of flowers, friends and family in the U.S. may send donations to St John’s College, Cambridge, at or, in the U.K., to


Lessons of Homo naledi

Anatomy, Archaeology, Archeogenetics, Archeology, Biological Science, Death, Evolution, Human Evolution, Palaeoanthropology, Palaeobiology, Palaeoecology, Palaeontology

New discoveries of fossilised hominin remains have to varying degrees helped to shape our ever-morphing interpretation of hominin evolution. Homo naledi is a case in point.

Though many worker in the field of palaeoanthropology were disappointed with the confirmed Middle Pleistocene age of the Dinaledi remains, this news nevertheless fills a void in our understanding of Middle Pleistocene evolution.

H. naledi confirms what we have known since the astonishing discovery of Homo floresiensis, namely that small brained hominins continued to thrive in some part of the planet right up to recent times. H. naledi can now join Homo floresiensis in the small brain Middle to Late Pleistocene club.

Palaeoanthropologist can now exercise a high level of skepticism on dating hominin fossilised remains using morphological stucture and statistics. In 2015, palaeoanthropologist John Francis Thackeray concluded Homo naledi to be over 1.5 Ma, while Mana Dembo and her colleagues concluded an age of 930,000 years of age for the Rising Star remains. Though Dembo et al were closer to actual age of the remains, they were still nearly 600,000 years off.

Finally, H. naledi continues to confirm what we have known since the announcement of Australopithecus sediba that hominin evolution features an ever changing mosasicism. With Australopithecine-like shoulders and cranium, while the lower limbs and foot appears more derived.

New discoveries of fossilised hominin remains have to varying degrees helped to shape our ever-morphing interpretation of hominin evolution. Homo naledi is a case in point.

Cancer: The Earliest Carcinoma Yet Discovered

Archaeology, Archeology, Cancer, Human Evolution, Palaeoanthropology, Palaeopathology, Paleoanthropology, Paleopathology

You are looking at the rise of metastatic carcinoma in human body cells. A form of cancer with the ability to infect other organs in a biological organism. While Leprosy is the oldest documented disease in the world, thus far, dating to 4000 B.C. India. Ignoring the debate regarding the true age of knowledge in the Edwin Smith Papyrus (While it dates to 1600 B.C, the knowledge it contains may be as much as 1400 years older), evidence for Cancer may date back to northern Sudan 3,200 years ago.


 Skeleton 244-8 was recovered from tomb G244 in the Amara West C cemetery in 2013. This 25 to 35 year old man was found with a considerable coverage of pin-sized perforations from shoulder to proximal femor. The bone tissue was therefore attacked by something. Historically Metastatic organ cancers are the most likely candidate as they prefer bone tissue. Tumor cells spread through haematopoietic-rich bone marrow creating holes as a result of bone reabsorption in a process known as osteolysis.


 This research is helping us better understand the evolution of cancer and is a useful glance-back to remind us that animals and plants are not the only organisms that evolve, disease causing bacteria have evolved with us (animals, plants etc.) for hundreds of millions of years.

What about insects in hominin diets?

Archaeology, Archeology, Diet, DNA, Human Evolution, Insects, Journal of Human Evolution, Lithics, Palaeoanthropology, Paleoanthropology, Research

It should come as no surprise to students of hominin evolution that little discussion has been devoted to the relationship between the hominin and the insect.

Paranthropus boisei reconstruction

This topic was addressed back in 2001 in the chapter of an academic volume by William McGrew of the department of Archaeology and Anthropology, University of Cambridge. Since then nothing has been done to address ways in which such an investigation could be conducted. What can be done to address this? Look at what we………..modern primate diets and the role insects play in their diets from the human to the Orangutan. Let’s then look at the earliest evidence for hominin consumption of insects. South Africa has nabbed that prize, thus far. The Lower Palaeolithic sites of Swartkrans, Sterkfontein and Drimolen contained hominin fossil bone tools with wear patterns similar to those wear patterns you find on sticks used by Chimps to fish for termites. Fossil remains of Paranthropus robustus were found at these sites and the evidence suggests they were feasting on termites.

Examining the fossil evidence is one focus, but there are others including, lithics, residues, dental microwear, stable isotopes, DNA and coprolites (fossilised feaces). The dental microwear presents various problems, given that they have been in the ground for millions of years. Stable isotopic research is highlighted in William McGrew’s latest paper in the Journal of Human Evolution.

Since the above was first published, a significant amount of work has been done to shed more light on this topic.